Портал садовода - Fiora24

Мозга в связи с чем. Головной мозг и его состав

Кора головного мозга (см. верхний рисунок). Этот отдел головного мозга, который в свою очередь, подразделяется на: затылочную долю, височную долю, теменную долю и лобную долю. Здесь расположены участки, отвечающие за деятельность таких функций организма, как зрение, речь, слух и т.д. Некоторые из этих участков отвечают сразу за несколько функций. А теперь рассмотрим подробней основные отделы головного мозга (см. нижний рисунок):

1)Передний мозг – связан с важнейшими умственными процессами, такими как мышление, планирование и принятие каких-либо решений. Гиппокамп отвечает за функционирование памяти. Таламус же служит как ретранслятор всей поступающей в мозг информации. Ну а нервные клетки, расположенные в гипоталамусе обрабатывают информацию, поступающую от вегетативной нервной системы (таким образом, служа проводником для регулятивных систем организма) и затем подают организму сигналы к какому-либо действию.

2)В среднем мозге расположены две маленьких возвышенности – иначе говоря, колликулы. Колликулы – скопления клеток, передающие информацию от органов чувств в мозг.

3)Задний мозг состоит из варолиева моста и продолговатого мозга, контролирующих процесс дыхания и сердцебиение; и мозжечка, который отвчает за движение и когнитивные процессы связанные с точным контролем временни.

Ежегодные расходы на лечение заболеваний нервной системы и головного мозга (опрос проводился среди жителей США):

В нашей стране, к огромному сожалению, этим заболеваниям не уделяется должного внимания и подобная статистика недоступна, но очевидно, что они есть и необходимо заниматься этими вопросами.

Нейрон – основная «рабочая сила» человеческого мозга. Первоочерёдная функция нейронов – передавать информацию в другие нервные клетки, мышцы или в железистые клетки. Множество взаимосвязанных друг с другом нейронов формируют саму структуру мозга. В среднем, человеческий мозг содержит от одного до ста миллиардов нервных клеток (этот показатель может варьироваться в зависимости от многих факторов).

Нейрон состоит из: тела клетки, дендритов, а также аксона. Тело клетки состоит из ядра и цитоплазмы. Аксон, получивший электрический импульс, вырывается за пределы тела клетки и в большинстве случаев устанавливает взаимосвязь с нервными окончаниями.Дендриты также выходят за пределы тела клетки, после чего они принимают информацию, исходящую от других нервных клеток. Синапс – область контакта нервных клеток между собой или с иннервируемыми ими тканями. Формируясь из остатков аксонов, полученных от других нервных клеток, синапс полностью покрывает собой тело клетки и дендриты. Нейронный сигнал представляет собой передачу аксоном электрических импульсов, чья протяжённость может колебаться от пары сантиметров до одного метра и более. Многие аксоны также покрыты оболочкой из миелина, который служит как катализатор процесса передачи информации. Состав этой оболочки может варьироваться в зависимости от местонахождения самой нервной клетки: к примеру, в головном мозге эту оболочку составляют так называемые олигодендроциты, а в периферической нервной системе – шванновские клетки (или нейролеммоциты). Также нервные импульсы влекут за собой цикличное открытие и закрытие ионных каналов (проницаемых водонаполненных образований), благодаря чему ионы (заряженные атомы) и меньшие частицы могут двигаться не только в пределах клетки, но и выходить за её пределы. А затем поток ионов создаёт небольшой поток электичества, который влечёт за собой незначительные изменения в клеточной мембране.
Нейроны могут вырабатывать электричество главным образом благодаря тому, что их внутренняя и внешняя часть имеют различную полярность. Когда возникает электрический импульс, то смена полярности с отрицательной на положительную влечёт за собой накопление электрического заряда в клеточной мембране. Это явление уже вошло в науку под названием «потенциал действия». Затем, накопленный импульс со скоростью около 200-300 километров в час проходит через мембрану.
Пройдя через мембрану и достигнув границы аксона, электрический заряд стимулирует выброс нейротрансмиттеров (вырабатываемые организмом вещества, незаменимые в большинстве процессов жизнедеятельности). Нейротрансмиттеры, как правило, выбрасываются в районе нервных окончаний. Затем они прицепляются к поверхности какой-либо клетки так, чтобы могли перемещаться вместе с ней. Чаще всего в качестве своей «жертвы» они избирают нервную клетку, но бывает и так, что это оказывается железистая клетка или часть мышечной ткани. Рецепторы клетки служат своего рода «выключателем». За каждым из них закреплён свой чётко обозначенный участок головного мозга, который может совершенно по-разному реагировать на рецепторы, в зависимости от того, какой из нейротрансмиттеров они несут. То, как нейротрансмиттеры попадают на этот самый участок, можно сравнить с тем, как ключ открывает замок. Когда трансмиттер наконец окажется на месте, он тут же вызывает реакцию, которая может быть разной: накопление потенциала действия, сокращение определённой мышцы или группы мышц, стимуляция выработки ферментов или временное блокирование выброса нейротрансмиттеров.
В целом, понятие «нейротрансмиттеры» и то, как они появляются и какие функции выполняют в нашем организме – один из основных и наиболее тщательно исследуемых разделов нейрологии.
Поведение нейротрансмиттеров главным образом изучается у животных, но учёные уверены, что сделанные в этой области открытия смогут найти применение и для людей – к примеру, помогут выявить (и в дальнейшем устранить) причины возникновения болезни Альцгеймера или болезни Паркинсона. Изучая циркуляцию различных химических веществ в организме, можно узнать и понять очень многое: как работает наша память, почему у нас такая высокая сексуальная потребность, как ментальные заболевания или расстройства проявляются в организме и т.д.

Нейротрансмиттеры и нейромодуляторы.

Ацетилхолин (ACh) был первым обнаруженным нейротрансмиттером (его открыли около 75 лет назад). За выработку ацетилхолина отвечают две группы нервных клеток: те, которые контролируют сердцебиение и те, которые заставляют сокращаться определённые группы мышц (так называемые «произвольно сокращающиеся мышцы»). Действие ацетилхолина затрагивает практически все участки головного мозга.
ACh формируется на концевых участках аксона (также называемых «аксонные терминали»). Когда потенциал действия (импульс, описанный выше) достигает нервных окончаний, происходит массовый выброс заряженных ионов кальция, после чего ацетилхолин проходит сначала через синапс, а затем присоединяется к рецепторам клетки. Находясь в мышечных тканях, ACh стимулирует циркуляцию натрия, что вызывает сокращение мышц. Затем ацетилхолин расщепляется другим веществом, называемым «Ацетилхолинэстераза» (AChE), после чего повторно синтезируется вновь. Существуют также антитела, блокирующие клеточные рецепторы, к которым присоединяется ACh. Доказано, что эти антитела вызывают бульбоспинальный паралич – болезнь, характеризующуюся повышенной утомляемостью и слабостью мышц.
Намного в меньшей степени изучена циркуляция ацетилхолина в головном мозге. Но, как показали недавние исследования в этой сфере, ацетилхолин является неотъемлемой частью таких явлений, как память, внимание и сон. Первичная цель учёных на настоящий момент – найти способы регенерации нервных клеток, контролирующих выброс ацетилхолина (а именно отсутствие этих клеток приводит к болезни Альцгеймера). Используемые в медицине препараты для излечения болезни Альцгеймера препятствуют действию ацетилхолинэстеразы и таким образом предотвращают снижение уровня ацетилхолина в организме.
Аминокислоты – «строительные блоки», расположенные по всему телу, в том числе и в головном мозге. Определённые виды аминокислот также могут выполнять функции нейротрансмиттеров.
Трансмиттеры глицин и гамма-аминомасляная кислота предотвращают отмирание нервных клеток. Эффект гамма-аминомасляной кислоты можно усилить при помощибензодиазепинов или противосудорожных препаратов. В ходе болезни Хантингтона концентрация гамма-аминомасляной кислоты в организме снижается, отчего, в свою очередь, ухудшается координация движений.
Глутамат и аспартат в организме выполняют функцию возбудителей. Они активируют различные рецепторы, в том числе и N-метил- D-аспартиновые (NMDA) рецепторы, которые отвечают за множество процессов, протекающих в организме – начиная от процесса обучения и развития памяти, и заканчивая развитием нервной системы в целом. Стимуляция NDMA-рецепторов влечёт за собой существенные изменения в головном мозге, однако избыточная стимуляция может нанести непоправимый вред организму – вплоть до уничтожения нервных клеток.
NDMA-рецепторы, их функционирование, структура, расположение в организме – всё это активно изучается учёными и по сей день. Для лечения различных расстройств как неврологического, так и психиатрического характера, уже разрабатываются лекарственные препараты, способные стимулировать или, наоборот, блокировать работу NDMA-рецепторов.
Катехоламины. Дофамин и норэпинефрин – неотъемлемые составляющие как головного мозга, так и периферической нервной системы. Дофамин в основном содержится в трёх участках головного мозга: в контролирующем движения организма участке, в вызывающем внешние проявления симптомов психического заболевания участке и в контролирующем гормональный отклик участке. Первый из этих участков непосредственно связан с возникновением различного рода заболеваний, как показали последние научные исследования. Симптомы болезни Паркинсона (дрожание в мышцах, потеря гибкости, затруднённые движения) проявляются как раз из-за недостатка дофамина в головном мозге. Учёными-медиками было сделано открытие: воздействие налеводопу (т.е. вещество, из которого состоит дофамин) благотворно влияет на страдающих болезнью Паркинсона, давая больным возможность более свободно двигаться и ходить.
Второй из вышеотмеченных участков (вызывающий внешние проявления симптомов психического заболевания) играет, помимо всего прочего, огромную роль в работе сознания и проявлении эмоций. Научно доказано, что шизофрения непосредственно связана с нарушениями работы этого участка. Хотя препараты, блокирующие излишнюю выработку дофамина довольно-таки успешно справляются со своей задачей – устранить симптомы психического заболевания – лучше всё-таки изучить проблему «изнутри». Детальное изучение дофамина помогает учёным лучше понять саму природу психических заболеваний.
И наконец, дофамин, содержащийся в третьем участке мозга (контролирующем гормональный отклик), контролирует работу эндокринной системы. Благодаря ему гормоны вырабатываются в гипоталамусе и затем накапливаются в гипофизе, чтобы по мере надобности быть выпущенными в кровь.
Нервные волокна, содержащие норэпинефрин, находятся за пределами головного мозга. Недостаточная или избыточная концентрация этого вещества, помимо болезней Альцгеймера и Паркинсона, также ведёт к корсаковскому синдрому (также называемому «дизнойя Корсакова») – болезнью, носящую те же симптомы, что и хронический алкоголизм. По мнению учёных, норэпинефрин также может влиять на процесс обучения и память. Также при помощи норэпинефрина симпатическая нервная система регулирует сердцебиение и кровяное давление. В ходе сильного стресса органы симпатической системы и надпочечники немедленно активизируются, начиная вырабатывать этот гормон.
Серотонин. Этот нейротрансмиттер находится не только в головном мозге, но также и за его пределами – в основном в тромбоцитах и в желудочно-кишечном тракте. Расположенный в головном мозге серотонин отвечает за такие процессы и чувства, как сон, настроение, страхи и депрессии. Учёными установлено, что вещества, схожие по строению с серотонином (к примеру, флуоксетин), могут так же, как и он, избавлять от симптомов депрессии и постоянного нервного напряжения.
Пептиды. Пептиды – это связанные между собой цепи аминокислот. Их не следует путать с протеинами – протеины имеют более обширную и более сложную структуру.
В 1973 году учёными была обнаружена область головного мозга, вырабатывающая опиаты. Это позволило сделать вывод о том, что человеческий мозг может вырабатывать вещества, оказывающие примерно такое же воздействие, что и опиум. Спустя некоторое время в ходе научного исследования был обнаружен опиат, напоминающий по своей структуре морфий (разновидность опиума, используемая ранее в медицине как обезболивающее). Это вещество получило название «энкефалин» (название буквально переводится как «в голове»). Немногим позже были открыты эндорфины – ещё один вид опиатных пептидов (слово «эндорфин» образовано от «эндогенный морфин»). Подобно морфию, эндорфины утишают боль и вызывают сонливость.
Пока ещё точно не известно, какой цели служат опиатные пептиды в нашем организме. Предположительно, они вырабатываются мозговыми клетками в моменты сильного стресса, чтобы облегчить боль и помочь адаптироваться к стрессовой ситуации, чтобы как можно быстрей преодолеть её. Если эта гипотеза верна, то она объясняет, почему травмы, полученные в ходе стресса или, например, драки, замечаются нами порой только спустя несколько часов – нервные клетки под действием эндорфинов не воспринимают сигналы о боли, полученные от органов чувств.
Опиаты неразрывно связаны с участками головного мозга, которые активируются поступающими сигналами о боли или физических травмах. Сигналы о боли передаются вцентральную нервную систему (головной и спинной мозг) при помощи миелированных волокон, главным образом класса «С» (миелированные волокна подразделяются на несколько классов в зависимости от выполняемых функций; помимо С- волокон также существуют A?-волокна, A?-волокна и т.д.). Как показали недавние открытия учёных, в С-волокнах содержится так называемое «вещество Р» - именно из-за него мы чувствуем жгучую боль при травме или во время болезни. Вещество Р вырабатывается в организме под воздействием капсацина (который, кстати, входит в состав острого перца чили).
Трофические факторы. В ходе научных исследований учёными были открыты протеины микроскопических размеров, которые, как оказалось, очень важны для развития и функционирования определённых групп нейронов. Эти протеины вырабатываются в головном мозге и никогда не покидают его пределов. Также учёными был открыт генетический код, влияющий на то, к каким из нервных клеток могут присоединяться эти протеины, а к каким – не могут. Это открытие позволило науке сделать огромный шаг к пониманию того, что собой представляют трофические факторы. Также благодаря этому открытию в будущем можно будет разработать новые методы лечения различных отклонений в работе головного мозга и таких заболеваний, как болезнь Альцгеймера и болезнь Паркинсона.
Гормоны. Эндокринная система, подобно нервной системе, служит также в качестве коммуникационной системы нашего организма. Гормоны выполняют в эндокринной системе примерно ту же функцию, что и нейротрансмиттеры выполняют в нервной системе. В нашем организме насчитывается множество источников гормонов: поджелудочная железа, почка, сердце, надпочечники, гонады, щитовидная и околощитовидная железа, вилочковая железа и т.д. Но основную роль в эндокринной системе выполняет гипофиз, направляющий поток гормонов в кровь. Эндорфины, выбрасываемые гипофизом в кровь, также могут функционировать в качестве гормонов. Эндокринная система отвечает за множество естественных процессов и потребностей человеческого организма: секс, эмоции, реакция на стресс, а также рост, размножение, метаболизм и т.д. Благодаря гормонам, наш мозг становится «пластичным», т.е. может быстро реагировать на любые внешние раздражители.
Существуют две группы гормонов: тироидные и стероидные. Стероидные гормоны, в свою очередь, подразделяются на шесть видов – андрогены, эстрогены, прогестины, глюкокортикоиды, минералокортикоиды и витамин D. Рецепторы гормонов расположены во многих органах человеческого тела, но наибольшее их количество находится в головном мозге. Как тироидные, так и стероидные гормоны способны соединяться с протеинами, которые, в свою очередь, связываются с ДНК и воздействуют на генную структуру организма. Изменения в генной структуре влекут за собой изменения в клеточной структуре организма и затрагивают многие процессы, протекающие в ней.
А вообще, головной подвергается влиянию не только тех гормонов, о которых было рассказано выше. Наряду с ними существуют метаболические гормоны, такие какинсулин (известный также как «гормон роста»), грелин и лептин. Этот вид гормонов влияет на активность нервной системы, а также на её структуру.
В моменты стресса или нарушения наших «внутренних часов» гормоны незамедлительно поступают в кровь, а затем уже распределяются по всему организму. Попадая в головной мозг, гормоны стимулируют выработку продуктов генов, которые могут, во-первых, служить в качестве синаптических нейротрансмиттеров, а во-вторых, воздействуют на структуру мозговых клеток.
В результате чего структура самого мозга также меняется – как говорится, «медленно, но верно». Также наш мозг приспосабливается к постоянной меняющейся обстановке вокруг нас. Гормоны незаменимы в ходе этой адаптации, а также защите от возможных стресс-факторов. Однако гормоны стресса - к примеру глюкокортикоид кортизол – также могут существенно повлиять на фундаментальные процессы головного мозга, включая и процесс обучения. Сильный и продолжительный стресс может нанести необратимый вред головному мозгу.
Возьмём процесс размножения у женщин как пример, чтобы на нём показать как гормоны циркулируют по нашему телу и к каким результатам это приводит. Нервные клетки гипоталамуса вырабатывают гонадолиберин – пептид, воздействующий на клетки гипофиза. Затем, и в женском, и в мужском организме вырабатываются два гормона:фолликулостимулирующий гормон (также называемый «пролан А» или «ФСГ») илютеинизирующий гормон («пролан Б», «ЛГ»). Далее, в мужском организме эти два гормона циркулируют к яичкам, где они высвобождают мужской гормон тестостерон (андроген), направляя его в кровь. В женском организме ФСГ и ЛГ воздействуют на яичники, в результате чего выделяются женские гормоны – эстроген и прогестерон. Тестостерон, эстроген и прогестерон часто называют «гормоны секса».
Повышенный уровень тестостерона у мужчин или эстрогена и прогестерона у женщин также влечёт за собой изменения в клеточной структуре, вызывая более высокую сексуальную активность. Гормоны секса также воздействуют на многие функции нашего организма: внимание, настроение, память, боль и т.д. «Половая принадлежность» головного мозга определяется тем, какие гормоны воздействовали на него в большей степени во внутриутробном и послеродовом периоде его развития, хотя последние научные изыскания выявили зависимость также от количества генов в Y-хромосоме. Тем не менее, учёными было обнаружено множество существенных физических различий между мозгом мужчины и мозгом женщины. К примеру, у них различна структура и размер нейронных соединений гипоталамуса, а также коры и гиппокампа.
Половая принадлежность – это далеко не только сексуальное поведение и различия в процессе размножения. Она затрагивает множество участков головного мозга и большинство его функций, начиная от способов восприятия болевых ощущений и реакции на стресс до выработки стратегий для решения какой-либо когнитивной задачи. Но, хотя различия и существует, всё же справедливо будет отметить, что между мозгом мужчины и мозгом женщины больше сходств, чем различий.
Также исследования в области анатомии выявили, что существуют различия между мозгом людей традиционной сексуальной ориентации и нетрадиционной. Основываясь на этом, можно сделать вывод о том, что гормоны и гены, воздействующие на организм человека в самом начале его развития формируют также и сексуальную ориентацию и вообще всё, что может быть обобщено словом «сексуальный», но об этом судить пока рано: учёные всё ещё пытаются найти последние недостающие фрагменты в этой мозаике.
Газы. Доказано, что газы также могут служить в качестве нейротрансмиттеров. Тем не менее, эти два газа – оксид азота и моноксид углерода (угарный газ) функционируют не совсем в точности так же, как и нейротрансмиттеры. Благодаря их структуре они не скапливаются в каком-либо определённом участке организма. Они вырабатываются при помощи ферментов, которые по мере надобности производятся нервными клетками. Газы не задействуют рецепторы, как это делают обычные нейротрансмиттеры. Они просто проникают в соседние клетки и уже находясь в них действуют на различные их участки или на ферменты, содержащиеся в них.
Хотя роль моноксида углерода в организме ещё до конца не изучена, уже научно подтверждено, что оксид азота выполняет сразу несколько функций. К примеру, благодаря циркуляции оксида азота мужчины могут испытывать эрекцию. Находясь в нервных окончаниях кишечника, он регулирует процесс пищеварения. Находясь в головном мозге, он контролирует работу циклического гуанозинмофосфата. Вред, наносимый нервным клеткам в ходе сильного стресса из-за избыточной концентрации вырабатываемого глутамата, также может иметь связь с оксидом азота.

Вторичные мессенджеры.

После нейротрансмиттеров в работу включаются так называемые «вторичные мессенджеры» («вторичные передатчики») – вещества, активирующие различные биохимические процессы, протекающие внутри клеток. Внутриклеточные изменения могут повлечь за собой радикальные и длительные изменения в нервной системе. Если описать этот процесс в двух словах, то вторичные мессенджеры передают «химическую почту» от клеточной мембраны к внутренней биохимической структуре клетки. Эффект от действия вторичных месседжеров может быть различным: от нескольких миллисекунд до минут или даже часов.
В активации вторничных мессенджеров непосредственное участие принимаетаденозинтрифосфат (АТР) – химический источник энергии клеток, который есть во всех клетках организма. АТР, как правило, расположен в цитоплазме.
Здесь неплохо было бы привести пример. Выстроим последовательность событий:
1)норэпинефрин присоединяется к нейрону;
2)активированный рецептор нейрона, в свою очередь, вовлекает G-белок в клеточную мембрану;
3)уже находясь внутри клеточной мембраны, G-белок заставляет ферментАденилатциклазу трансформировать АТР в циклический аденозинмонофосфат (цАМФ);
4)вторичный мессенджер цАМФ воздействует на множество внутриклеточных процессов: начиная от изменений в работе ионных каналов и заканчивая изменениями в структуре генов в белке (естественно, при этом он продолжает выполнять свою роль передатчика).
Также считается, хоть и не доказано, что вторичные мессенджеры также играют роль в выработке и последующему выбросу нейротрансмиттеров, а также в межклеточных циркуляциях различного рода.
Сюда же стоит добавить участие вторичных мессенджеров в процессе метаболизма головного мозга и в таких процессах, как рост и развитие организма. Также стоит отметить, что воздействие мессенджеров на генную структуру клеток может привести к долговременным изменениям клеточной структуры, а как следствие – и поведения самого организма в целом.

Нейрон. Активизируясь, нейрон передаёт электрические импульсы по аксону. Когда импульсы достигают конечной точки аксона, они стимулируют выброс нейротрансмиттеров (скапливающихся в так называемых везикулах). Затем нейротрансмиттеры присоединяются к молекулам-рецепторам, расположенным на соседних нейронах. Точка, в которой нейроны соприкасаются друг с другом, называется «синапс».

Головной мозг является главным регулятором всех функций живого организма. Он представляет собой один из элементов центральной нервной системы. Строение и функции головного мозга — предмет изучения медиков до сих пор.

Общее описание

Человеческий мозг состоит из 25 млрд. нейронов. Именно эти клетки представляют собой серое вещество. Мозг покрыт оболочками:

  • твердой;
  • мягкой;
  • паутинной (по ее каналам циркулирует так называемый ликвор, который является спинномозговой жидкостью). Ликвор является амортизатором, защищающим головной мозг от ударов.

Несмотря на то, что мозг женщин и мужчин одинаково развит, он имеет разную массу. Так у представителей сильного пола его масса в среднем составляет 1375 г, а у дам – 1245 г. Вес мозга составляет около 2% от веса человека нормального телосложения. Установлено, что уровень умственного развития человека никак не связан с его весом. Он зависит от количества связей, созданных головным мозгом.

Клетки мозга – это нейроны, генерирующие и передающие импульсы и глии, выполняющие дополнительные функции. Внутри мозга есть полости, называемые желудочками. От него в разные отделы тела отходят парные черепно-мозговые нервы (12 пар). Функции отделов головного мозга бывают самыми разными.От них полностью зависит жизнедеятельность организма.

Строение

Строение головного мозга картинки которого представлены ниже, можно рассматривать в нескольких аспектах. Так в нем выделяют 5 главных отделов мозга:

  • конечный (80% общей массы);
  • промежуточный;
  • задний (мозжечок и мост);
  • средний;
  • продолговатый.

Также головной мозг разделяют на 3 части:

  • большие полушария;
  • ствол мозга;
  • мозжечок.

Строение головного мозга: рисунок с названием отделов.

Конечный мозг

Строение головного мозга кратко нельзя описать, поскольку без изучения его структуры невозможно понять его функции. Конечный мозг протянулся от затылочной до лобной кости. В нем различают 2 большие полушария: левое и правое. Он отличается от других отделов мозга наличием большого количества извилин и борозд. Строение и развитие головного мозга тесно взаимосвязаны. Специалисты различают 3 вида коры мозга:

  • древнюю, к которой относятся обонятельный бугорок; продырявленное переднее вещество; полулунная, подмозолистая и боковая подмозолистая извилина;
  • старую, к которой относят гиппокамб и зубчатую извилину (фасцию);
  • новую, представленную всей остальной частью коры.

Строение полушарий головного мозга: они разделены продольной бороздой, в глубине которой расположен свод и мозолистое тело. Они соединяют полушария мозга. Мозолистое тело — это новая кора, состоящая из нервных волокон. Под ним находится свод.

Строение больших полушарий головного мозга представляется в качестве многоуровневой системы. Так в них различают доли (теменную, лобную, затылочную, височную), кору и подкорку. Большие полушария головного мозга выполняют много функций. Правое полушарие управляет левой половиной тела, а левое — правой. Они дополняют друг друга.

Кора

Гипоталамус — это подкорковый центр, в котором происходит регуляция вегетативных функций. Его влияние происходит через железы внутренней секреции и нервную систему. Он участвует в регуляции работы некоторых эндокринных желез и обмене веществ. Под ним находится гипофиз. Благодаря ему происходит регуляция температуры тела, пищеварительной и сердечнососудистой систем. Гипоталамус регулирует бодрствование и сон, формирует питьевое и пищевое поведение.

Задний мозг

Этот отдел состоит из расположенного спереди моста и находящегося позади него мозжечка. Строение моста головного мозга: дорсальная поверхность его накрыта мозжечком, а вентральная имеет волокнистое строение. Эти волокна направлены поперечно. Они с каждой стороны моста переходят в мозжечковую среднюю ножку. Сам мост имеет вид белого толстого валика. Он располагается над продолговатым мозгом. В бульбарно-мостовой борозде выходят корешки нервов. Задний головной мозг: строение и функции -на фронтальном разрезе моста заметно, что он состоит из большой вентральной (передней) и маленькой дорсальной (задней) части. Граница между ними — трапециевидное тело. Его толстые поперечные волокна относят к слуховому пути. Задний мозг обеспечивает проводниковую функцию.

Часто называемый малым мозгом, располагается сзади моста. Он прикрывает ромбовидную ямку и занимает практически всю заднюю ямку черепа. Его масса составляет 120-150 г. Над мозжечком сверху нависают большие полушария, отделенные от него поперечной щелью мозга. Нижняя поверхность мозжечка прилежит к продолговатому мозгу. В нем различают 2 полушария, а также верхнюю и нижнюю поверхность и червя. Граница между ними называется глубокой горизонтальной щелью. Поверхность мозжечка изрезана множеством щелей, между которыми расположены тоненькие валики (извилины) мозгового вещества. Группы извилин, находящиеся между глубокими бороздками являются дольками, которые, в свою очередь, составляют доли мозжечка (переднюю, клочково-узелковую, заднюю).

В мозжечке различают 2 вида вещества. Серое находится на периферии. Оно образует кору, в которой есть молекулярный, грушевидных нейронов и зернистый слой. Белое вещество головного мозга всегда находится под корой. Так и в мозжечке оно образует мозговое тело. Оно проникает во все извилины в виде белых полосок, покрытых серым веществом. В самом белом веществе мозжечка есть вкрапления серого вещества (ядра). На разрезе их соотношение напоминает дерево. От функционирования мозжечка зависит наша координация движения.

Средний мозг

Этот отдел располагается от переднего края моста до сосочковых тел и зрительных трактов. В нем выделяют скопление ядер, которые называются буграми четверохолмия. Средний мозг отвечает за скрытое зрение. Также в нем расположен центр ориентировочного рефлекса, обеспечивающий поворот тела в сторону резкого шума.

1. Мозг не чувствует боль

Tatiana Ayazo / rd.com

Вы когда-нибудь задумывались, как нейрохирурги проводят операции на мозге без наркоза? Просто в мозге нет болевых рецепторов. Зато они есть в мозговых оболочках и кровеносных сосудах. Поэтому, когда мы испытываем головную боль, болит вовсе не сам мозг, а окружающие его ткани.

2. Мозг работает активнее, когда мы спим


Tatiana Ayazo / rd.com

Работая, мозг создаёт электрические поля, которые можно измерить на поверхности кожи головы с помощью метода электроэнцефалографии (ЭЭГ). Нам кажется, что во время сна мозг выключен, но на самом деле он работает даже активнее, чем днём. В период бодрствования он производит альфа- и бета-волны, а во время сна, особенно на его начальных стадиях, тета-волны. Их амплитуда больше, чем у других волн.

3. Клетки мозга - это не только нейроны


Tatiana Ayazo / rd.com

На один нейрон приходится около десяти глиальных клеток. Они обеспечивают нейронам доступ питательных веществ и кислорода, отделяют нейроны друг от друга, участвуют в метаболических процессах и передаче нервных импульсов.

4. Влюблённость можно увидеть на фМРТ-снимках


Tatiana Ayazo / rd.com

Кто-то считает, что влюблённость - это просто концепция, но фМРТ-снимки мозга доказывают обратное. У людей в этом состоянии активны области мозга, связанные с . На снимках видно, как «загораются» места, в которых присутствует дофамин - нейромедиатор, вызывающий приятные ощущения.

5. Мозг производит достаточно электричества, чтобы загорелась небольшая лампочка


Tatiana Ayazo / rd.com

9. На мозг, как и на мышцы, распространяется правило «Используй или потеряешь»


Tatiana Ayazo / rd.com

Мы можем расширить свой когнитивный резерв, или врождённую способность мозга восстанавливаться, с помощью разных видов обучения и новых впечатлений. Было доказано, что люди с более развитым когнитивным резервом лучше справляются с неожиданностями. Но если мозг не использовать, этот резерв будет сокращаться.

10. Кратковременной памяти хватает на 20–30 секунд


Tatiana Ayazo / rd.com

Вы когда-нибудь задумывались, почему после того, как мы ненадолго отвлеклись, мы забываем, что хотели сказать? Это связано со способностью мозга удерживать в памяти небольшие объёмы информации. Он сохраняет её для быстрого доступа, но всего лишь в течение 20–30 секунд. Числа, например, удерживаются в памяти в среднем 7,3 секунды, а буквы - 9,3.

1. Нехватка кислорода в течение 5–10 минут приводит к необратимым повреждениям мозга.

2. Мозг развивается и легко адаптируется к новому даже в 40 лет. Снижение умственной деятельности начинается, когда человеку исполняется 50 лет.

3. На «эксплуатацию» мозга уходит до 20% от содержащегося в теле кислорода и крови.

4. Существует «вирус глупости». Он меняет ДНК человека таким образом, что у больного снижается уровень интеллекта - падает мозговая активность, способность к обучению и запоминанию новой информации.

5. В состоянии бодрствования человеческий мозг производит достаточно электричества, чтобы от него работала небольшая лампочка.

6. Домашнее насилие оказывает на детский мозг такое же влияние, как на солдата - участие в настоящем сражении.

7. Научно доказано: даже небольшое применение силы меняет алгоритмы работы мозга и снижает уровень эмпатии (возможность сопереживать эмоциям другого человека).

8. Вкусовые рецепторы в теле человека можно обнаружить в желудке, кишечнике, поджелудочной железе, легких, анусе, яичках и… конечно же, в мозге.

9. Патологоанатом, проводивший посмертное вскрытие тела Альберта Эйнштейна… украл его мозг и 20 лет хранил его в банке со спиртом.

10. 60% вашего мозга - это… жир.

11. У человеческого мозга такая же консистенция, как у соевого творога тофу.

12. Запах шоколада активизирует тета-волны мозга. Как следствие, наступает расслабление.

13. Во время оргазма мозг выделяет столько дофамина (гормон удовольствия), что становится похож на мозг героинового наркомана.

14. Забывание - полезный процесс для мозга. Удаление ненужной информации помогает нервной системе сохранять пластичность.

15. Алкоголь не помогает забыть то, что вы делали вчера. Когда человек напивается, что называется, «в стельку», мозг просто на время блокирует возможность создавать воспоминания об увиденном.

16. Sphenopalatine ganglioneuralgia - научное название для болезни, при которой голова болит из-за быстрого поедания мороженого.

17. Мозг НЕ делится на левое и правое полушарие - это миф. Они работают в паре.

18. Учёные установили: долговременное использование мобильных телефонов заметно увеличивает риск рака головного мозга.

19. Депривация (лишение) сна влияет на мозг сразу по несколько направлениям. В их числе - принятие неверных решений и замедленная реакция.

20. Исследователи утверждают - человеческий мозг воспринимает отказ в чём-либо как физическую боль.

21. Для того, чтобы отреагировать на употребление алкоголя, клеткам головного мозга достаточно 6 минут.

22. Когда вы узнаете что-то новое, структура вашего мозга меняется. Да-да, она уже изменилась:)

23. Хирург может удалить до половины мозга без негативного эффекта для личности или памяти.

24. Футуролог Рэй Курцвейл полагает, что среднестатистический ноутбук за $1 000 догонит мозг по производительности не ранее 2023 года.

25. Музыка активизирует те же участки мозга, которые отвечают за выработку дофамина во время еды или секса.

27. Чувство уверенности в себе можно вызвать искусственной стимуляцией определенного участка мозга. При этом не возникает необходимости ни в фактах, ни в доказательствах.

28. У нас больше мозговых клеток, чем у новорожденного - настолько больше, насколько не будет уже никогда.

29. Половина ваших генов описывает уникальный «дизайн» вашего же мозга во всём его своеобразии, другая половина - организацию всех остальных 98 процентов вашего тела.

30. Мозг ребенка потребляет до 50% получаемой малышом глюкозы. Наверное, именно поэтому они так много спят.

31. В 2015 году 4-му по мощности суперкомпьютеру мира потребовалось 40 минут для того, чтобы симулировать работу мозга в течение всего-навсего одной секунды.

32. Человеческий мозг состоит из 100 миллиардов нейронов и 1 триллиона глиальных клеток.

33. В состоянии отдыха мозг потребляет 1/5 калории в минуту.

34. Научный факт: строгая диета может привести к тому, что ваш мозг пожрёт сам себя.

35. Между людьми с аутизмом и без него нет никаких отличий в анатомии головного мозга.

Что такое свободные радикалы?

Почему, если смешать все краски, получится коричневый цвет, а не белый, ведь белый содержит в себе все цвета?

7 неожиданных фактов о мире вокруг нас

Поразительный мир

10 поразительных фактов о собачьем мышлении

Собака - друг человека и нередко что-нибудь, да от него и перенимает

Жизнь без мозга: истории людей, которым удалили важнейшие части мозга, но они прекрасно живут и без них

Жить можно и с 10%

30 удивительных фактов о мозге и мышлении, которые заставляют призадуматься

Самую простую неудачу или мелкое разочарование мозг расценивает как потенциальную угрозу жизни. Чтобы однажды испытанная боль больше не повторялась, организм вырабатывает специальный гормон - кортизол, который в разных количествах вызывает у нас чувство страха, тревоги или даже стресс. В издательстве «Манн, Иванов и Фербер» вышла книга Лоретты Грациано Бройнинг «Гормоны счастья. Как приучить мозг вырабатывать серотонин, дофамин, эндорфин и окситоцин» . «Теории и практики» публикуют отрывок о том, как работает наш детектор опасностей и почему мысль о лишних килограммах делает человека более несчастным, чем рассказ о смертельных болезнях предков.

«Гормоны стресса» - естественная сигнальная система

Когда вы видите ящерицу, греющуюся на солнце, то можете подумать: «Вот оно, безграничное счастье». Однако на самом деле вы просто видите, как ящерица пытается спастись от гибели. Холоднокровные рептилии могут погибнуть от гипотермии, если не будут часто выползать на солнце. Однако, греясь под ним, они могут стать добычей хищника. Поэтому рептилии по многу раз на дню совершают перемещения с солнца, грозящего гибелью, в тень и обратно. Они совершают эти перемещения, в буквальном смысле убегая от гнетущего ощущения дискомфорта.

Ящерица выползает на солнце тогда, когда падение температуры ее тела заставляет уровень кортизола в ее организме повышаться. Находясь на солнце в постоянной опасности, она внимательно сканирует окружающую обстановку на предмет появления хищника и стремглав убегает, лишь только почувствовав малейший признак опасности. Ничего приятного в этом для ящерицы нет. Но она выживает, поскольку ее мозг научился сравнивать одну угрозу с другой.

Ствол мозга и мозжечок человека на удивление похожи на мозг рептилии. Природа приспосабливает для работы старые структуры, а не создает их заново. До сих пор та часть нашего головного мозга, которая называется «рептильный мозг», контролирует процессы обмена веществ и реакцию на потенциальные угрозы. У млекопитающих поверх рептильного мозга развился еще один слой мозгового вещества, который делает возможным их общение друг другом, а у людей появилась кора головного мозга, которая позволяет анализировать события прошлого, настоящего и будущего. Рептильный мозг располагается на пересечении путей взаимодействия высших отделов человеческого мозга с телом человека, поэтому некоторые ситуации буквально заставляют нас холодеть от предчувствия опасности. Многие при этом ощущают угрозу очень остро. Поэтому вам будет полезно узнать, как работают ваши детекторы опасности.

Как работает кортизол

Кортизол - это система оповещения организма о чрезвычайной ситуации. Кортикоидные гормоны вырабатываются у рептилий, амфибий и даже червей в тех случаях, когда они обнаруживают угрозу жизни. Эти гормоны вызывают ощущение, которое люди описывают как «боль». Вы обязательно обращаете внимание на боль. Она неприятна и заставляет вас предпринять чрезвычайные усилия для того, чтобы ее остановить. Мозг стремится избежать рецидивов боли, накапливая опыт, как можно ее исключить. Когда вы видите какие-то признаки, напоминающие вам об уже испытанной боли, происходит выброс в кровь кортизола, который помогает действовать таким образом, чтобы избежать ее. Большой мозг может генерировать множество ассоциаций, то есть распознавать множество возможных источников боли.

«Мозг рассматривает любую неудачу или разочарование как угрозу, и это ценно»

Когда уровень кортизола в нашем организме достигает больших значений, мы испытываем то, что называем «страхом». Если кортизол вырабатывается в средних количествах, то мы испытываем состояние «тревоги» или «стресса». Эти негативные эмоции предупреждают о том, что если не предпринять экстренных действий, то могут наступить болевые ощущения. Ваш рептильный мозг не может сказать, почему он выбросил кортизол. Просто по нейронным путям прошел электрический импульс. Когда вы понимаете это, то можете проще отличать внутренние тревоги от внешних угроз.

Казалось бы, будь мир проще устроен, надобность в кортизоле отпала бы сама собой. Однако мозг рассматривает любую неудачу или разочарование как угрозу, и это ценно. Мозг предупреждает нас о том, что следует избегать дальнейших неудач и разочарований. Например, если вы безрезультатно прошли много километров в поисках воды, то растущее ощущение дискомфорта удержит вас от дальнейшего продвижения по явно неправильному пути. Невозможно все время правильно предугадывать развитие ситуации, поэтому кортизол всегда будет стараться делать это за вас. Понимание механизма действия кортизола поможет жить в большей гармонии с окружающим миром.

Кортизол настраивает ваш мозг на фиксацию всего, что предшествует боли

Подсознательные импульсы, которые вы получаете буквально за несколько секунд до появления боли, очень важны с точки зрения перспектив выживания. Они позволяют идентифицировать беду, которая вот-вот случится. Мозг накапливает такую информацию без осознанных усилий или намерений, потому что подсознательные импульсы в нашем мозгу существуют на протяжении всего нескольких мгновений. Эта «буферная память» позволяет болевым нейронным цепочкам моментально оценить события, которые непосредственно происходят до возникновения боли. Нейронные связи дают живым существам возможность обнаружить потенциальные угрозы, не прибегая к рациональному анализу.

Иногда мозг подсознательно соединяет то, что происходило за мгновения до возникновения боли, с самим болевым ощущением. Например, в психиатрии известен случай, когда девушку охватывал панический страх при первых звуках чьего-либо смеха. Эта девушка когда-то попала в тяжелую автомобильную аварию, в которой погибло несколько ее друзей. Она вышла из комы, ничего не помня о самом происшествии, но не могла справиться с приступами страха, когда слышала смех. Психотерапевт помог ей вспомнить, что в момент аварии она шутила и смеялась со сверстниками, сидя на заднем сиденье машины. Ее рептильный мозг связал звуки смеха и последовавшую сильную боль. Разумеется, рациональным умом, сосредоточенным в коре головного мозга, она понимала, что не смех вызвал дорожное происшествие. Но сильная боль создает мощные кортизоловые нейронные пути еще до того, как может вмешаться кора головного мозга и «отфильтровать» скопившуюся в них информацию. Как только девушка слышала смех, ее кортизоловые нейронные связи резко активизировались, заставляя ее предпринять что-то для предупреждения возникновения боли. Но что именно нужно было сделать, она не знала. Отсюда и сильнейшие приступы страха.

Подсознательное чувство опасности активно помогает живым организмам выживать. Представьте себе ящерицу, которую хватает орел. Вонзающиеся в тело ящерицы острые когти заставляют ее синтезировать кортизол, который попадает во все свободные нейроны. И происходит это буквально за миллисекунды до того, как ящерица почувствует боль, поскольку электрические импульсы длятся всего несколько мгновений. Запах орла и ощущение темноты, когда его крылья закрывают солнце, теперь связаны с механизмом выброса кортизола у ящерицы. Если ей удастся освободиться, на память ей останется новый мощный кортизоловый нейронный путь. Таким образом эти нейронные связи позволяют рептилии избежать смерти, даже не зная, что собой представляет орел.

Сохранение в памяти ощущения боли имеет глубокий смысл

Боль является для нашего мозга предупредительным сигналом. Когда она значительна, мозг создает сильные нейронные связи, которые вызывают у нас фобии и посттравматические стрессы. Менее острая боль формирует меньшие сигнальные цепи, которые мы иногда даже не замечаем. Мы остаемся с ощущениями тревоги, которую порой даже не можем объяснить. Иногда кажется, что было бы лучше, если бы мы могли стирать те нейронные цепочки, которые принесли несостоявшиеся предзнаменования. Но задача выживания не позволяет нам сделать этого. Представьте себе, что ваш далекий предок видит, что кто-то умирает от ядовитых ягод. Уровень кортизола у него в крови резко повысится, и он запомнит эту ягоду навсегда. Спустя годы, даже будучи очень голодным, он сможет удержаться от употребления этой ягоды в пищу. Ваш дальний предок выжил потому, что у него на всю жизнь сохранился кортизоловый нейронный путь, который спас его от гибели.

Выживание сегодня и в эпоху наших далеких предков

Кортизол, или «гормон стресса», создает предохранительные нейронные пути, смысл которых иногда трудно понять. Вы понимаете, что, конечно, не умрете, если не получите долгожданного продвижения по службе или если кто-то толкнет вас на игровой площадке. Вы осознаете, что не погибнете из-за длинной очереди на почте и от того, что по этой причине вам выпишут штраф за неправильную парковку машины, которую вы рассчитывали быстро забрать. Но ваши нейромедиаторы эволюционировали так, что при любой неудаче они вызывают ощущение угрозы жизни.

«Когда вы испытываете стресс перед экзаменами или по поводу того, что выглядите толстым, кортизол создает у вас предчувствие немедленной гибели»

Гормоны стресса создают у нас представление, что современная жизнь хуже, чем у наших предков. Когда вы испытываете стресс перед экзаменами или по поводу того, что выглядите толстым, кортизол создает у вас предчувствие немедленной гибели. Когда же вы думаете о тех угрозах, с которыми сталкивались ваши предки, никакого прилива кортизола и чувства обреченности вы не испытываете. Это происходит потому, что стрессовые нейронные связи создаются только на основе непосредственного опыта, а реального опыта предков у вас нет.

Люди, которые в наши дни постоянно твердят о том, что жизнь ужасна, просто хотят усилить ощущение угрозы, чтобы получить поддержку в своих делах. Вам не верится, что чувство дискомфорта может возникать из-за небольших волнений. Вы продолжаете искать свидетельства того, что в мире существуют большие угрозы, и многие с удовольствием такие доказательства предоставляют. Если вы посмотрите телевизионные новости или послушаете речи политиков, то с неизбежностью почувствуете, что мир движется к катастрофе. В итоге мир все же не рушится, но вы не успеваете испытать радость по этому поводу, потому что ваше внимание переключают на новые доказательства грядущих катаклизмов. Это вызывает еще более негативные эмоции, но вы боитесь выключить телевизор, опасаясь остаться наедине с ощущениями угрозы.

Различия между поколениями

Мы любим несколько поверхностно представлять себе угрозы, с которыми сталкивались наши предки. Можно представить, как ваш предок героически съедает запретные ягоды и, разбивая старые догмы, доказывает всем, что они не ядовиты. Жить было бы гораздо проще, если б старые истины были ложны, а советы друзей всегда правильны. Однако, к сожалению, мир устроен сложнее, и те предшественники, которые игнорировали предупреждение о ядовитой ягоде, скорее всего, умерли, не передав свои гены потомству.

Современные люди унаследовали гены от тех, кто уже преимущественно опирался на накопленный в течение жизни опыт. Мы учимся доверять своему личному опыту и не бояться тех угроз, которых страшились наши далекие предки. Каждое новое поколение учится распознавать опасности на основе собственных кортизоловых нейронных путей. Конечно, мы наследуем память об опасностях и от старших поколений. Но каждая человеческая генерация, как правило, снисходительно относится к тревогам своих предков и формирует свои собственные страхи.

Я поняла это на своем неприятном опыте. Однажды мать сказала мне, что не спала всю ночь из-за того, что забыла купленное молоко на прилавке магазина и боялась, что оно испортится до утра. Я только усмехнулась. Но после ее смерти я поняла, что, когда она была ребенком, это могло грозить ей и троим ее сестрам голодом, потому что она отвечала в семье за еду. Реальная тревога создала нейронную связь в ее мозгу, и эта тревога навсегда осталась с ней.

Как хорошо было бы, если бы я поняла это еще при ее жизни. Сегодня мне остается только радоваться тому, что в моем мозгу такие связи формируются на основе моего собственного опыта. Тревоги моей матери стали частью моего жизненного опыта благодаря существованию зеркальных нейронов. Благодаря ее тревогам я избежала потребления плохих ягод или игр на проезжей части дороги. У меня сформировался свой детектор опасностей, и у него уже появились свои причуды.

Экстраполирование прошлого опыта в настоящее

Мозг человека привык обобщать прошлый опыт. Иногда, обжегшись на молоке, мы дуем на воду, но нам пришлось бы гораздо труднее, если бы мы не учились на ошибках и боли. Медуза не способна к обобщениям, поэтому, обжегшись о горячую плиту одним щупальцем, она спокойно прикоснется к горячему другим. Ваш мозг - это главный диспетчер, который связывает прошлую боль с потенциальной будущей. Мы ожидаем опасности с таким нетерпением, что паникуем при статистических расчетах, что одному человеку из 10 миллионов может стать плохо через двадцать лет. Мы испытываем угрозу от того, что босс приподнимает бровь на миллиметр. Нелегко с таким старанием ожидать опасностей. […]

Изображения: © anna sinitsa/iStock, © style-photography/iStock.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении